635 research outputs found

    Inverse-Compton gamma rays in the galaxy

    Get PDF
    Compton gamma rays with energies 1 MeV largely results from scattering between electrons, with energies 100 MeV, and photons in the optical and infrared range and the 2.7 K universal blackbody radiation. An empirical model of the inverse Compton (IC) gamma ray production in the Galaxy is presented, using the most recent estimate of the interstellar electron spectrum given by Webber and a combination of optical and infrared observations to determine the galactic distribution of the various components of the interstellar photon field. The present analysis has an improved precision since the spectral distribution of the IC source function as well as that of the interstellar photon field are more accurately taken into account. The exact evaluation of the IC process is applied and different electron distribution models are considered

    XMM-Newton observations of the spiral galaxy M74 (NGC 628)

    Get PDF
    The face-on spiral galaxy M74 (NGC 628) was observed by XMM on 2002 February 2. In total, 21 sources are found in the inner 5' from the nucleus (after rejection of a few sources associated to foreground stars). Hardness ratios suggest that about half of them belong to the galaxy. The higher-luminosity end of the luminosity function is fitted by a power-law of slope -0.8. This can be interpreted as evidence of ongoing star formation, in analogy with the distributions found in disks of other late-type galaxies. A comparison with previous Chandra observations reveals a new ultraluminous X-ray transient (L_x \~ 1.5 x 10^39 erg/s in the 0.3--8 keV band) about 4' North of the nucleus. We find another transient black-hole candidate (L_x ~ 5 x 10^38 erg/s) about 5' North-West of the nucleus. The UV and X-ray counterparts of SN 2002ap are also found in this XMM observation.Comment: submitted to ApJL. Based on publicly available data, see http://xmm.vilspa.esa.es/external/xmm_news/items/sn_2002_ap/index.shtm

    Diffractive Interaction and Scaling Violation in pp->pi^0 Interaction and GeV Excess in Galactic Diffuse Gamma-Ray Spectrum of EGRET

    Full text link
    We present here a new calculation of the gamma-ray spectrum from pp->pi^0 in the Galactic ridge environment. The calculation includes the diffractive pp interaction and incorporates the Feynman scaling violation for the first time. Galactic diffuse gamma-rays come, predominantly, from pi^0->gamma gamma in the sub-GeV to multi-GeV range. Hunter et al. found, however, an excess in the GeV range ("GeV Excess") in the EGRET Galactic diffuse spectrum above the prediction based on experimental pp->pi^0 cross-sections and the Feynman scaling hypothesis. We show, in this work, that the diffractive process makes the gamma-ray spectrum harder than the incident proton spectrum by ~0.05 in power-law index, and, that the scaling violation produces 30-80% more pi^0 than the scaling model for incident proton energies above 100GeV. Combination of the two can explain about a half of the "GeV Excess" with the local cosmic proton (power-law index ~2.7). The excess can be fully explained if the proton spectral index in the Galactic ridge is a little harder (~0.2 in power-law index) than the local spectrum. Given also in the paper is that the diffractive process enhances e^+ over e^- and the scaling violation gives 50-100% higher p-bar yield than without the violation, both in the multi-GeV range.Comment: 35 pages, 11 figures, to appear in Astrophysical Journa

    The final COS-B database: In-flight calibration of instrumental parameters

    Get PDF
    A method for the determination of temporal variation of sensitivity is designed to find a set of parameters which lead to maximum consistency between the intensities derived from different observation periods. This method is briefly described and the resulting sensitivity and background variations presented

    The final COS-B database now publicly available

    Get PDF
    The data obtained by the gamma ray satellite COS-B was processed, condensed and integrated together with the relevant mission and experiment parameters into the Final COS-B Database. The database contents and the access programs available with the database are outlined. The final sky coverage and a presentation of the large scale distribution of the observed Milky Way emission are given. The database is announced to be available through the European Space Agency

    CO Distribution and Kinematics Along the Bar in the Strongly Barred Spiral NGC 7479

    Get PDF
    We report on the 2.5 arcsec (400 pc) resolution CO (J = 1 -> 0) observations covering the whole length of the bar in the strongly barred late-type spiral galaxy NGC 7479. CO emission is detected only along a dust lane that traverses the whole length of the bar, including the nucleus. The emission is strongest in the nucleus. The distribution of emission is clumpy along the bar outside the nucleus, and consists of gas complexes that are unlikely to be gravitationally bound. The CO kinematics within the bar consist of two separate components. A kinematically distinct circumnuclear disk, < 500 pc in diameter, is undergoing predominantly circular motion with a maximum rotational velocity of 245 km/s at a radius of 1 arcsec (160 pc). The CO-emitting gas in the bar outside the circumnuclear disk has substantial noncircular motions which are consistent with a large radial velocity component, directed inwards. The CO emission has a large velocity gradient across the bar dust lane, ranging from 0.5 to 1.9 km/s/pc after correcting for inclination, and the projected velocity change across the dust lane is as high as 200 km/s. This sharp velocity gradient is consistent with a shock front at the location of the bar dust lane. A comparison of H-alpha and CO kinematics across the dust lane shows that although the H-alpha emission is often observed both upstream and downstream from the dust lane, the CO emission is observed only where the velocity gradient is large. We also compare the observations with hydrodynamic models and discuss star formation along the bar.Comment: 16 pages, including 10 figures. Accepted for publication in Ap

    CO Luminosity Functions For FIR and B-band Selected Galaxies and the First Estimate for Omega_{HI+H2}

    Full text link
    We derive a non-parametric CO luminosity function using a FIR and an optical B-band selected sample of the galaxies included in the FCRAO Extragalactic CO Survey. The FIR selected sample is defined using the IRAS Bright Galaxy Surveys (BGS; IRAS 60 micron flux density >= 5.24 Jy). Although our CO sample is not complete, the normalization using the BGS reproduces the IRAS 60 micron luminosity function in excellent agreement with those found in the literature. Similarly, a B-band selected sample defined using the Revised Shapley-Ames (RSA) catalog is used to derive a CO luminosity function for a comparison. A Schechter function describes the both derived CO luminosity functions reasonably well. Adopting the standard CO-to-H2 conversion factor, we derive a molecular gas density of rho_{H2}=(3.1\pm 1.2)*10^7h Mo Mpc^{-3} for the local volume. Combining with the measurements of the local HI mass density and the helium contribution, we estimate that the total mass density of cold neutral gas in the local universe is Omega_{gas} =(4.3 \pm 1.1)*10^{-4} h^{-1}, which is about 20% of the total stellar mass density Omega_{stars}.Comment: 16 pages, 11 figures uses aastex.cls and emulateapj5.sty. Accepted for publication in Ap

    Cyg X-3: Not seen in high-energy gamma rays by COS-B

    Get PDF
    COS-B had Cyg X-3 within its field of view during 7 observation periods between 1975 and 1982 for in total approximately 300 days. In the skymaps (70 meV E 5000 meV) of the Cyg-X region produced for each of these observations and in the summed map, a broad complex structure is visible in the region 72 deg approximately less than 1 approximately less than 85 deg, approximately less than 5 deg. No resolved source structure is visible at the position of Cyg X-3, but a weak signal from Cyg X-3 could be hidden in the structured gamma-ray background. Therefore, the data has been searched for a 4.8 h timing signature, as well as for a source signal in the sky map in addition to the diffuse background structure as estimated from tracers of atomic and molecular gas

    Diffuse Gamma-Ray Emission from Starburst Galaxies and M31

    Get PDF
    We present a search for high energy gamma-ray emission from 9 nearby starburst galaxies and M31 with the EGRET instrument aboard CGRO. Though the diffuse gamma-ray emission from starburst galaxies was suspected to be detectable, we find no emission from NGC 253, M82 nor from the average of all 9 galaxies. The 2 sigma upper limit for the EGRET flux above 100 MeV for the averaged survey observations is 1.8 x 10-8 ph cm-2 s-1. From a model of the expected radio and gamma-ray emission, we find that the magnetic field in the nuclei of these galaxies is > 25 micro Gauss, and the ratio of proton and electron densities is < 400. The EGRET limits indicate that the rate of massive star formation in the survey galaxies is only about an order of magnitude higher than in the Milky Way. The upper limit to the gamma-ray flux above 100 MeV for M31 is 1.6 x 10-8 ph cm-2 s-1. At the distance of M31, the Milky Way flux would be over twice this value, indicating higher gamma-ray emissivities in our Galaxy. Therefore, since the supernova rate of the Milky Way is higher than in M31, our null detection of M31 supports the theory of the supernova origin of cosmic rays in galaxies.Comment: 17 pages, plus 1 Postscript figure, AAS Latex macros v4.0, accepted for publication in ApJ Main Journa

    A New Limit on the Antiproton Lifetime

    Full text link
    Measurements of the cosmic ray pbar/p ratio are compared to predictions from an inhomogeneous disk-diffusion model of pbar production and propagation within the Galaxy, combined with a calculation of the modulation of the interstellar cosmic ray spectra as the particles propagate through the heliosphere to the Earth. The predictions agree with the observed pbar/p spectrum. Adding a finite pbar lifetime to the model, we obtain the limit tau_pbar > 0.8 Myr (90 % C.L.).Comment: 13 pages, 3 encapsulated Postscript figures, uses AASTeX; accepted by Astrophysical Journal; minor change
    corecore